The SAP, a new family of proteins, associate and function positively with the SIT4 phosphatase.
نویسندگان
چکیده
SIT4 is the catalytic subunit of a type 2A-related protein phosphatase in Saccharomyces cerevisiae that is required for G1 cyclin transcription and for bud formation. SIT4 associates with several high-molecular-mass proteins in a cell cycle-dependent fashion. We purified two SIT4-associated proteins, SAP155 and SAP190, and cloned the corresponding genes. By sequence homology, we isolated two additional SAP genes, SAP185 and SAP4. Through such an association is not yet proven for SAP4, each of SAP155, SAP185, and SAP190 physically associates with SIT4 in separate complexes. The SAPs function positively with SIT4, and by several criteria, the loss of all four SAPs is equivalent to the loss of SIT4. The data suggest that the SAPs are not functional in the absence of SIT4 and likewise that SIT4 is not functional in the absence of the SAPs. The SAPs are hyperphoshorylated in cells lacking SIT4, raising the possibility that the SAPs are substrates of SIT4. By sequence similarity, the SAPs fall into two groups, the SAP4/SAP155 group and the SAP185/SAP190 group. Overexpression of a SAP from one group does not suppress the defects due to the loss of the other group. These findings and others indicate that the SAPs have distinct functions.
منابع مشابه
Interaction with Tap42 is required for the essential function of Sit4 and type 2A phosphatases.
In Saccharomyces cerevisiae, Pph21 and Pph22 are the two catalytic subunits of type 2A phosphatase (PP2Ac), and Sit4 is a major form of 2A-like phosphatase. The function of these phosphatases requires their association with different regulatory subunits. In addition to the conventional regulatory subunits, namely, the A and B subunits for Pph21/22 and the Sap proteins for Sit4, these phosphatas...
متن کاملHuman Protein Phosphatase PP6 Regulatory Subunits Provide Sit4-Dependent and Rapamycin–Sensitive Sap Function in Saccharomyces cerevisiae
In the budding yeast Saccharomyces cerevisiae the protein phosphatase Sit4 and four associated proteins (Sap4, Sap155, Sap185, and Sap190) mediate G(1) to S cell cycle progression and a number of signaling events controlled by the target of rapamycin TOR signaling cascade. Sit4 and the Sap proteins are ubiquitously conserved and their human orthologs, PP6 and three PP6R proteins, share signific...
متن کاملA Novel Sit4 Phosphatase Complex Is Involved in the Response to Ceramide Stress in Yeast
Ceramide is a building block for complex sphingolipids in the plasma membrane, but it also plays a significant role in secondary signalling pathways regulating cell proliferation and apoptosis in response to stress. Ceramide activated protein phosphatase activity has been previously observed in association with the Sit4 protein phosphatase. Here we find that sit4Δ mutants have decreased ceramid...
متن کاملDistinct subsets of Sit4 holophosphatases are required for inhibition of Saccharomyces cerevisiae growth by rapamycin and zymocin.
Protein phosphatase Sit4 is required for growth inhibition of Saccharomyces cerevisiae by the antifungals rapamycin and zymocin. Here, we show that the rapamycin effector Tap42, which interacts with Sit4, is dispensable for zymocin action. Although Tap42 binding-deficient sit4 mutants are resistant to zymocin, these mutations also block interaction between Sit4 and the Sit4-associating proteins...
متن کاملSit4p protein phosphatase is required for sensitivity of Saccharomyces cerevisiae to Kluyveromyces lactis zymocin.
We have identified two Saccharomyces cerevisiae genes that, in high copy, confer resistance to Kluyveromyces lactis zymocin, an inhibitor that blocks cells in the G(1) phase of the cell cycle prior to budding and DNA replication. One gene (GRX3) encodes a glutaredoxin and is likely to act at the level of zymocin entry into sensitive cells, while the other encodes Sap155p, one of a family of fou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 16 6 شماره
صفحات -
تاریخ انتشار 1996